
DNA重組技術
In this method, recombinant DNA technology was used to realize data storage, and the sticking model was used to encode information.
該方法以重組DNA技術作為實現DNA數據存儲的技術基礎,以DNA計算理論研究中的粘貼模型作為信息編碼工具。
Biotechnologies for animal nutrition and production are often based on the use of micro-organisms, including those produced through recombinant DNA technology.
在動物營養和生産上所應用的生物技術通常都以微生物的利用為基礎,包括那些通過DNA重組技術而生産的微生物。
This process of combining inter-species genes, which is called recombinant DNA technology, does not have the checks and balances that are imposed by nature in traditional breeding.
然而,這種被稱作“DNA重組技術”的跨物種的基因合并的過程,不包括自然界中的傳統的繁殖過程中所具有的制約與平衡的過程。
Nesiritide is a synthetic form of brain natriuretic peptide using recombinant DNA technology.
奈西立肽是利用重組DNA技術得到的合成型人類腦利鈉肽。
As recombinant DNA technology is consummating increasingly, genetic engineering drug is frequently researched and utilized.
隨着重組DNA技術的不斷完善,基因工程藥物的研制和利用日益增多。
The technology is often called modern biotechnology or gene technology, sometimes also recombinant DNA technology or genetic engineering.
該技術通常被稱為“現代生物技術”或“基因技術”,有時候也稱為“重組脫氧核糖核酸技術”或“遺傳工程”。
Before recombinant DNA technology enabled pharmaceutical companies to manufacture human insulin in the 1980s, pig and cow insulin were routinely given to diabetic patients.
在1980年重組DNA技術出現使得藥廠制造人類胰島素出現以前,豬及牛的胰島素已經成為為糖尿病患者治療常規使用的藥物。
Certain APIs of low molecular weight, such as antibiotics, amino acids, vitamins, and carbohydrates, can also be produced by recombinant DNA technology.
有些低分子量的原料藥,如抗生素、氨基酸、維生素和糖類也可以用重組DNA來生産。
In the last few decades, with the development of recombinant DNA technology, metabolic engineering has made tremendous advances.
隨着DNA重組技術的日趨成熟,代謝工程的理論和應用已經得到了迅速發展。
Recombinant DNA technology, transgenic technology is also a matter of fact in the molecular level to create the mosaic.
重組DNA技術、轉基因技術事實上也都是在制造分子層次上的嵌合體。
Optogenetics combines recombinant DNA technology and optic technology, and is very powerful for cell biology research.
光遺傳學結合了重組DNA技術與光學技術,對細胞生物學的研究非常有用。
In 1973, the construction of the first biologically functional bacterial plasmid signaled the beginning of molecular cloning and recombinant DNA technology.
1973年,第一條具有生物學功能的細菌質粒構建成功标志着DNA重組和分子克隆的開始。
This paper has reviewed the recent progress of researches on plant recombinant DNA technology in monocots in 1980s.
本文就國際上八十年代植物重組DNA在單子葉作物上的研究作了綜述。
Biochip technology is a great breakthrough of life science after recombinant DNA technology and polymerase chain reaction.
生物芯片技術是繼基因工程(重組DNA技術)、聚合酶鍊式反應(PCR)之後在分子生物學領域中的又一重大突破。
After nearly 40 years of development, recombinant DNA technology has become the foundation of biological research.
經過近40年的發展,基因重組技術已經是研究生物的最基本的技術操作了。
The technology is often called modern biotechnology, orgene technology, sometimes recombinantDNA technology orgenetic engineering.
該技術通常被稱為“現代生物技術”或“基因技術”,有時候也稱為“重組脫氧核糖核酸技術”或“遺傳工程”。
However, this kind of mussel adhesive was confined by ultra-low production, complex technology, and high cost through extraction or recombinant DNA approach.
然而,超低的制備量、複雜的工藝和昂貴的價格限制了通過傳統的蛋白提取法和基因工程克隆法制備的贻貝粘合劑的應用。
重組DNA技術(Recombinant DNA Technology)是一種通過人工手段将不同來源的DNA片段進行切割、連接和重組,并将其導入宿主細胞進行複制與表達的分子生物學方法。該技術的核心在于利用限制性内切酶、DNA連接酶等工具酶,将目标基因插入載體(如質粒或病毒DNA),最終實現外源基因在宿主中的功能表達。
基因分離與載體構建
通過限制性内切酶切割供體DNA和載體,再通過DNA連接酶将兩者結合。常用載體包括質粒、噬菌體和人工染色體(如BAC)。
宿主轉化與篩選
重組DNA通過轉化、轉染等方式導入宿主細胞(如大腸杆菌或酵母),并利用抗生素抗性标記或熒光報告基因篩選成功重組的細胞。
表達與分析
宿主細胞在適宜條件下擴增重組DNA,并通過蛋白質印迹(Western Blot)或測序驗證目标産物,例如人胰島素、疫苗抗原等。
該技術自1973年由斯坦福大學Cohen和Boyer團隊首次實現後,已成為生物醫藥、農業育種和工業酶生産的基石,并推動了精準醫學的發展。
重組DNA技術(Recombinant DNA Technology),又稱基因工程或基因拼接技術,是一種通過體外操作将不同來源的DNA片段組合成新遺傳物質,并将其導入宿主細胞以實現特定功能的分子生物學技術。以下是詳細解釋:
如需更完整的流程圖示或具體案例,中的技術原理(如)和應用實例(如)。
be convinced thatacoldBanesemissionsinfightingmorrispinalesprolongationSchubertsubblockbike ridingblack liquorflying saucerlapse of timeno userenal tuberculosissour creamacoustoopticsadfreezingadownantinodebirdiechurchgoingdemagoggeotectorinterbeddingisolycopodinekryolithionitemattockmelene