
【化】 NMR spectrometer
【化】 NMR; nuclear magnetic resonance
appearance; bearing; ceremony; instrument; present
Nuclear Magnetic Resonance Spectrometer (核磁共振儀) is a scientific instrument utilizing the principles of nuclear magnetic resonance (NMR) to analyze molecular structures and dynamics. The term translates directly to "Nuclear Magnetic Resonance Instrument" in Chinese, where "核" (hé) refers to atomic nuclei, "磁" (cí) indicates magnetic fields, and "共振" (gòngzhèn) describes the resonance phenomenon .
Its working mechanism involves exposing atomic nuclei (e.g., H or 3C) to strong static magnetic fields, then applying radiofrequency pulses to induce energy transitions. Detected signals are converted into spectra revealing chemical environments, as documented by the International Union of Pure and Applied Chemistry (IUPAC) in their 2021 technical report on spectroscopic standards. Key components include superconducting magnets (operating at 300-900 MHz frequencies), radiofrequency transmitters, and cryogenic probe systems .
Primary applications span:
Technical specifications typically include:
Safety protocols require shielding against 5 Gauss magnetic fields (OSHA Regulation 29 CFR 1910.97) and liquid helium handling certifications. Recent advancements in hyperpolarized NMR techniques have enhanced sensitivity by 10,000-fold, as validated by MIT's Department of Chemistry instrumentation studies.
核磁共振儀(Nuclear Magnetic Resonance Spectrometer,簡稱NMR或MRI)是一種基于原子核磁共振原理的精密儀器,主要用于醫學成像、化學分析及物理研究等領域。以下是綜合多個來源的詳細解釋:
核磁共振儀通過強磁場和射頻脈沖,使具有奇數質子或中子的原子核(如氫原子核)發生共振。當氫原子核在磁場中吸收射頻能量後,從低能态躍遷至高能态,隨後釋放能量并産生信號。這些信號經計算機處理重建為圖像或波譜。
早期稱“核磁共振”,後為避免公衆對“核”的誤解,醫學領域多稱“磁共振成像(MRI)”。該技術由美國物理學家拉比于1933年首次實驗成功,1970年代起應用于臨床。
如需更完整信息,可參考醫院或科研機構的技術文檔(如來源的量子物理原理)。
【别人正在浏覽】