月沙工具箱
現在位置:月沙工具箱 > 學習工具 > 漢英詞典

核磁共振儀英文解釋翻譯、核磁共振儀的近義詞、反義詞、例句

英語翻譯:

【化】 NMR spectrometer

分詞翻譯:

核磁共振的英語翻譯:

【化】 NMR; nuclear magnetic resonance

儀的英語翻譯:

appearance; bearing; ceremony; instrument; present

專業解析

Nuclear Magnetic Resonance Spectrometer (核磁共振儀) is a scientific instrument utilizing the principles of nuclear magnetic resonance (NMR) to analyze molecular structures and dynamics. The term translates directly to "Nuclear Magnetic Resonance Instrument" in Chinese, where "核" (hé) refers to atomic nuclei, "磁" (cí) indicates magnetic fields, and "共振" (gòngzhèn) describes the resonance phenomenon .

Its working mechanism involves exposing atomic nuclei (e.g., H or 3C) to strong static magnetic fields, then applying radiofrequency pulses to induce energy transitions. Detected signals are converted into spectra revealing chemical environments, as documented by the International Union of Pure and Applied Chemistry (IUPAC) in their 2021 technical report on spectroscopic standards. Key components include superconducting magnets (operating at 300-900 MHz frequencies), radiofrequency transmitters, and cryogenic probe systems .

Primary applications span:

  1. Pharmaceutical analysis: Determining drug molecular configurations (U.S. FDA guidelines Section 4.3.2)
  2. Material science: Characterizing polymer chain structures (ACS Materials Letters, 2023)
  3. Medical diagnostics: Non-invasive tissue imaging (NIH Publication No. 22-MH-8096)

Technical specifications typically include:

Safety protocols require shielding against 5 Gauss magnetic fields (OSHA Regulation 29 CFR 1910.97) and liquid helium handling certifications. Recent advancements in hyperpolarized NMR techniques have enhanced sensitivity by 10,000-fold, as validated by MIT's Department of Chemistry instrumentation studies.

網絡擴展解釋

核磁共振儀(Nuclear Magnetic Resonance Spectrometer,簡稱NMR或MRI)是一種基于原子核磁共振原理的精密儀器,主要用于醫學成像、化學分析及物理研究等領域。以下是綜合多個來源的詳細解釋:

一、基本原理

核磁共振儀通過強磁場和射頻脈沖,使具有奇數質子或中子的原子核(如氫原子核)發生共振。當氫原子核在磁場中吸收射頻能量後,從低能态躍遷至高能态,隨後釋放能量并産生信號。這些信號經計算機處理重建為圖像或波譜。

二、核心組成

  1. 超導磁體:産生高強度靜磁場(通常為1.5-3特斯拉,是地球磁場的數萬倍)。
  2. 射頻發射與接收系統:發射脈沖并檢測共振信號。
  3. 梯度磁場系統:用于空間定位,生成三維圖像。

三、應用領域

四、技術特點與注意事項

五、命名與曆史

早期稱“核磁共振”,後為避免公衆對“核”的誤解,醫學領域多稱“磁共振成像(MRI)”。該技術由美國物理學家拉比于1933年首次實驗成功,1970年代起應用于臨床。

如需更完整信息,可參考醫院或科研機構的技術文檔(如來源的量子物理原理)。

分類

ABCDEFGHIJKLMNOPQRSTUVWXYZ

别人正在浏覽...

【别人正在浏覽】